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Abstract

Personalization of modern Al systems is a rapidly advancing frontier, driven by
user demand and commercial incentives to enhance engagement and utility. We
argue that current approaches to personalization, which often optimize for user
satisfaction via mechanisms like Reinforcement Learning from Human Feedback
(RLHF), can conflate beneficial adaptation with ’sycophancy.” This position paper
posits that such sycophancy, particularly its latent forms in subjective or ambiguous
contexts, is a distinct and underappreciated challenge extending beyond easily
detectable factual inaccuracies. While pluralistic alignment is a notable objective,
we must ensure that the adaptability of models is balanced with controls to avoid
undesirable behavior. Naively pursuing personalization can inadvertently foster
models that reinforce biases and erode epistemic integrity, a critical risk given
society’s growing dependence on these systems for knowledge acquisition. We
call for a clear differentiation between genuine personalization and sycophantic
behavior, and outline crucial research directions to navigate this tension and enable
the development of models that are both highly adaptive and epistemically sound.

1 Introduction

In recent years, advances in deep learning have driven the emergence of foundational models,
particularly in the form of systems centered around large language models (LLMs). These models
have rapidly improved to support a wide array of real-world applications. With ongoing breakthroughs,
LLMs have evolved far beyond simple question-answering and now serve as sophisticated assistants
capable of human-like conversation (Ou et al., 2024; Jones and Bergen| 2024, 2025)). As a result,
significant research and engineering efforts are dedicated to enhancing user interactions with these
models. Both open-source contributors and commercial developers are pioneering new methods to
enable personalization (Hwang et al.| 2023 |Guan et al.| [2025a).

Leading companies like OpenAl have identified personalization as a priority for their Al products,
deploying mechanisms such as persistent chat history for a given user (OpenAll |d). In this context,
personalization is a source of product defensibility, a “moat” that helps retain users while discouraging
them from switching to competing models or platforms. Historically, similar defensibility mechanisms
that make products "sticky" have been responsible for the vast majority of value creation in the
technology sector (Farrell and Klemperer, 2007). Given these dynamics, we anticipate rapid advances
and an increasing emphasis on deeper personalization of LLMs in the near future. We expect
personalization to be developed on multiple levels: global model preference alignment, organization
personalization, user-level personalization, and even task-level personalization.

Preprint.
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Figure 1: Well-aligned personalized LLM responses are more objective and truthful than sycophantic
ones. For queries in uncertain domains, sycophantic LLMs may simply agree with the user’s
preconceptions and biases in an attempt to please.

Further personalization, such as adjusting the response to the style of prompt, collecting key insights
about the users across multiple conversations, and styling the response to maximize user engagement,
is possible and currently implemented by the leading LLM providers. Personalized Al interactions
bring potentially greater utility to the user having the conversation, but also introduce qualitative
considerations; tone, style, and verbosity can all impact user experience and perception. However,
personalization raises new risks. One of the most prominent is sycophancy, where a system prioritizes
aligning with a user’s beliefs over truthfulness or a balanced response. While this may increase user
satisfaction, it can encourage unsafe behavior or reinforce bias and stereotypes (Carrol 2024)).

Incentives for Personalization. For users, a personalized LLM offers the promise of a more
intuitive, efficient, and satisfying interaction. It can remember context, adapt its communication
style, understand individual preferences, and anticipate needs, thereby enhancing response quality
and reducing user friction. From a commercial perspective, deep personalization is a strong driver
for user engagement and retention. As LLMs become a commodity, the ability to offer a uniquely
tailored experience can become a critical "moat" or competitive differentiator, fostering user loyalty,
increasing switching costs, and reducing churn (OpenAl, |b). Furthermore, personalized LLMs could
unlock new monetization avenues, from premium tailored services to more effective B2B solutions
where the LLM adapts to specific organizational workflows, knowledge bases, and communication
norms. The commercial incentives for sophisticated LLM personalization necessitates a careful
examination of the associated risks, primarily sycophancy.

Obstacles to Personalization. A primary challenge lies in the definition and accurate collection of
user preferences for personalization purposes. The current paradigm, often reliant on Reinforcement
Learning from Human Feedback (RLHF) and implicit signals (e.g. thumbs up / down, continued
engagement), can inadvertently train models to prioritize user agreement or satisfaction over accuracy
and nuance (Sharma et al.| 2025). Users may naturally prefer responses that are simpler, confirm
their existing beliefs, or are emotionally validating—leveraging a psychological ‘spotlight effect’ that
validates the user’s perspective even if these responses are less factual or overly simplistic (Dul [2025)).
This creates a strong inductive bias towards sycophantic behavior. As noted by users and researchers,



even recent advanced models like GPT-40 have exhibited factual sycophancy post-deployment,
agreeing with user-stated falsehoods (OpenAl c).

The problem is compounded when moving beyond verifiable factual queries to subjective or ambigu-
ous domains. Here, "ground truth" is elusive, making it exceedingly difficult to differentiate helpful,
perspective-aware personalization from sycophancy that merely echoes the user’s opinions without
critical engagement. Detecting this subtle, latent sycophancy is far more challenging than identifying
factual inaccuracies.

Perhaps the most significant obstacle, and the central concern of this paper, is the inherent tension:
the very mechanisms designed to make LLMs more helpful and "aligned" with individual users
can, if naively implemented, systematically foster sycophancy. The optimization process itself
might lead to models that "reward hack" as they learn that appearing agreeable is a more reliable
path to positive feedback than providing challenging, nuanced, or corrective information (Denison
et al., 2024} |[Sharma et al., [2025)). Therefore, a core obstacle is developing robust frameworks
and evaluation methodologies that can actively disentangle beneficial personalization from these
undesirable sycophantic tendencies.

Our Viewpoint. As the frontier of Al advances, we foresee model creators and vendors being
incentivized to pursue ever-deeper personalization—across business-to-business (B2B), business-to-
consumer (B2C), and even consumer-to-consumer applications (C2C). Personalization is poised to
become a defining attribute of Al systems, with models expected to adapt dynamically to the unique
needs, preferences, and contexts of every organization and individual.

While previous research has extensively debated the alignment problem, focusing either on hypotheti-
cal AGI scenarios or on preventing overt harms in current-generation LLMs (Liu et al.,2024), the
subtler and rapidly emerging challenge is the tension between personalization and sycophancy. In
this paper, we argue that naively maximizing personalization using today’s prevailing frame-
works (e.g., RLHF, A/B testing, ongoing user feedback, or lifelong learning loops) will almost
inevitably induce sycophantic behavior that will result in models that mirror users’ beliefs,
preferences, and even biases, at the expense of accuracy and epistemic validity. This shift
carries the potential for significant, underappreciated harms: it can distort information environments,
reinforce confirmation biases, accelerate extremist views, and erode trust in digital assistants both at
the individual and societal scale.

We emphasize that this risk is not necessarily a result of “bad actors” or negligent engineering, but a
direct consequence of optimizing for perceived user satisfaction and product metrics during devel-
opment, much as was observed with the evolution of social media algorithms and recommendation
systems. The same mechanisms that deliver highly tailored, engaging content may also produce
echo chambers to increase user engagement at any cost, even if that means downplaying nuance,
mirroring bias, or amplifying stereotypes [Cinelli et al.| (2021). Moreover, as LLMs become more
adept at modeling subtle aspects of human communication, such as mirroring, tone changing, sim-
plifying explanations, and even adopting the user’s preferred vocabulary, these biases can become
more difficult to detect and audit Jakesch et al.| (2023)); 'Weidinger et al.|(2023). The risk of latent
sycophancy is particularly significant in subjective or ambiguous contexts, where there is no easily
verifiable “ground truth.”

Therefore, it is crucial to move beyond simplistic product metrics as a proxy for utility of personaliza-
tion and instead grapple with the real trade-offs: How do we balance user-centric adaptation with
limiting the impact of sycophancy? How can we proactively design systems that allow rich person-
alization, but actively monitor for and mitigate the harms of latent sycophancy? In this work, we
seek to clarify the source of this tension and pose research directions that can lead to the responsible
development of personalization in LLMs.

2 Current Approaches to Foundation Model Personalization

2.1 Personalization and Alignment for Foundation Models

Contemporary personalization of LLMs spans a spectrum from adapting the model weights to context
augmentation to injection at inference time. Enriching the prompt with user-specific context, such
as profile-augmented schemes, can be an extremely lightweight mechanism to steer models. Cue-



CoT (Wang et al.l 2023) shows that personality and emotion "cues" can steer chain-of-thought
reasoning, while embedding-based methods can use persona adapters to capture holistic style (Zhang
et al.| 2023)). Retrieval-augmented systems such as MemPrompt patch the prompt on-the-fly with a
structured external memory (Madaan et al.||2022). Methods that involve prompt augmentation serve
an advantage in guiding the abilities of closed-sourced models, in contrast to learned adaptation to
individual styles or preferences, which requires access to model weights.

Supervised fine-tuning on a user’s own texts can allow a model to learn a customized style or tone,
although these approaches are hardly tenable at scale. Reinforcement learning from human feedback
(RLHF) instead learns on aggregate preferences, aligning models via a learned reward model or
preference model (Ouyang et al., 2022} Bai et al., 2022alb). However, this aggregation notably results
in the trained model ignoring idiosyncrasies, without explicit mechanisms to steer model behavior
towards users akin to the aforementioned recommendation systems (Christiano et al., 2017} |Stiennon
et al.,[2020). There also exists a class of methods that seek to infer a latent preference vector per user
that conditions both the reward and policy, which can facilitate larger scale personalized RLHF even
in the face of sparse feedback (Poddar et al.l 2024), studying uncertainty in the reward (Siththaranjan
et al.,|2024), and even leveraging user-specific embeddings in RLHF (Li et al., 2024). It is challenging
to identify specific lens or attributes that drive preferences, although some recent works turn to notions
such as principles or specifications in a curated constitution to train the model to follow (Bai et al.}
2022b}; |[Kundu et al., [2023} |Guan et al., [2025b; [Liu et al.|[2025; Ramji et al., 2025)-however, these
operate at a more generic level, rather than user-specific. Personal taste can be decomposed as a
bespoke reward function, and split across several axes to align the language model. Multi-objective
RLHF trains models to learn each axis, while leveraging user-specific information at inference; this
enables a single policy that adapts outputs at deployment without retraining for each user (Wang
et al., 2024a}; [Yang et al.| 2024). Rewarded Soups (Ramé et al., |2023) trains a separate policy for
each dimension and performs linear interpolation at inference time, while Personalized Soups (Jang
et al.,[2023)) merges policies post-hoc for controllable tradeoffs. Ultimately, personalization must
coexist with general alignment strategies, which can aid in addressing a wider range of prompts for
both general and specific queries.

2.2 Societal and Ethical Implications

New ethical and social risks arise when addressing personalization with LLMs. While earlier RLHF
research aimed to improve honesty (Ouyang et al.,[2022)), optimizing for user approval can induce
sycophancy, where models optimize for agreement with the user during generation rather than
truthfulness; this is confirmed by empirical studies on RLHF-tuned models, suggesting this as a form
of preference overfitting (Sharma et al.l 2025} |Anthropicl [2024). A recent update to the GPT-40
models made it "noticeably more sycophantic", validating user’s negative actions (e.g. doubt or
anger) in an undesirable manner (OpenAlL [c), as a result of up-weighting user appeasement during
reinforcement learning. Correspondingly, deception and misleading behavior is a challenge to be
mitigated in foundation models; this has been shown to be a challenging in the faithfulness of
generated chains-of-thought (Turpin et al., 2023; |Chen et al.). There is a line of work studying
situational awareness in LLMs, suggesting that models can produce statements reflecting seemingly
concerning goals (Perez et al.,|2022; Marks et al.,2025)), a manifestation of alignment drift. While our
work primarily discusses behavior such as sycophancy induced as a result of the training objectives
and the data, it is important to be cognizant of such related misalignment analyses.

Personalizing Al systems raises critical questions about how to keep users informed and in control
of their own experience, such as having visibility into the factors that the system in personalizing.
This induces an important attribution problem; if a user designs a profile, how much control should
they have to change it? The ability to correct wrong assumptions via updates has been explored in
prior work (Kirk et al.,[2024)). Such notions go hand-in-hand with user agency, and the degree of
adjustability made possible in Al platforms. OpenAl has stated an intent to enable users with system
behavior customization for individual needs while balancing enforcement of controls to prevent
abuse (OpenAll b). This highlights the tension of interest in this paper—developers aim to enable
personalized systems and give users control to augment the nature of generated responses at will, but
need to enforce boundaries to avoid propagating harmful views or producing disallowed content.

Successful personalization strategies can help make Al systems more inclusive and effective across
diverse user groups, such as respecting cultural norms, language dialects, and individual needs



(Durmus et al., 2024; [Kirk et al., |2024). A key goal is pluralistic alignment—that is, aligning
language models to comprehensively, yet safely address diverse human values (Sorensen et al., 2024b).
However, personalization may also amplify biases, or insufficiently represent certain demographics,
resulting in inequality quality across users (Li et al.,|2016j Santurkar et al., 2023a). Moreover, echo-
chamber effects akin to the social media setting emerge when personalized LLMs slant information
to match a user’s beliefs, reinforcing filter bubbles, and possibly, polarizing perspectives (Lazovich,
2023)). Thus balancing pluralism with general alignment and safety remains a core objective for the
community to address moving forward.

3 How Should Foundation Models Respond Given Underspecified Context?

We focus on the setting of subjective queries under incomplete information. For queries with an
objective or verifiable response, the only room for personalization lies through stylistic elements
interlaced in the language model’s generations—there exists an objective standard of truthfulness
which may be measured by a reward model, judge, or other similarity score. For objective queries,
we would not expect to see a deviation in "correct” final answer judgements over the populatiotﬂ

By contrast, subjective queries may elicit extremely diverse views, without a "true" stance which the
model may anchor upon. Several issues arise under this setting, including confirmation bias and subtle
sycophancy. The former refers to the model answering in a manner which pleases the user based
on implied beliefs, but includes factually incorrect information. We term this as confirmation bias,
induced by reinforcement learning from {human, Al} feedback, often as a result of the nature of the
preference data that has been curated (Perez et al., |2022). This essentially suggests a disentanglement
between the human evaluation (which improves, as the model’s responses look more favorable to a
judge) and truthfulness (given the generation may include subtle, false claims which are overlooked
by the evaluator).The latter is a byproduct of helpful agents seeking to best address the prompt while
catering to assumptions on the user’s views, yielding sycophancy. Notably, in relationship to prior
works on this tradeoff (Bai et al., 2022alb), we suggest that silent sycophancy may be harder to detect
than harmlessness, and require more nuanced critiques or judgements.

However, we ask: is it necessarily sycophantic for a model to provide a response that agrees with
a particular (non-harmful) stance, provided that no clear notion of a truthful response exists in this
setting? Should the model be expected to abstain in such settings, or adopt a neutral stance always?

In this work, we discuss how this induces a steering framework based on information provided
in the context. Language models rely on contextual information included in the prompt to guide
decoding (Zhang et al.| 2025). However, underspecification can lead to greater uncertainty in the
model’s generations; incorrectly inferring the user’s preferences can also induce misalignment. The
central question we pose in this section—how should models behave in the presence of underspecified
context? We suggest that this problem can be studied through the lens of two relevant problem in
alignment and trustworthiness: (1.) inference-time preference steering for personalization and (2.)
uncertainty calibration for reliable decision-making.

3.1 Steering Language Models to Preferences

Although the preference optimization literature largely aims to leverage preference pairs (chosen and
rejected completions) on aggregate over a diverse population, recent works have begun to consider
algorithmic innovations toward personalized preference learning. From a data-centric lens, works
have suggested that on-policy, synthetic preferences can be used to iteratively improve language
models’ alignment capabilities (Dong et al., 2025; 'Wu et al.,|2025). In particular, identifying specific
dimensions which contrast generations appears to be a useful signal, for reward modeling, preference
optimization, reconstructing human-annotated data with specifications, and for further improving the
quality of responses (Wang et al., [2024a; D’ Oosterlinck et al.,|2024; Ramji et al.,|2024). However,
while synthetic preferences are substantially easier to collect, they may not necessarily replicate
human preferences, which may be more nuanced and noisy by comparison (Dubois et al.,2023).

'We acknowledge that queries that may be misleadingly phrased or are subject to interpretation can induce
different responses. Furthermore, there may be disagreement among experts regarding the correct answer,
introducing noise in the reference response. However, such settings likely have fewer modes than the subjective
queries described in this work, and induce a less diverse set of candidates.



Both human and synthetic data regimes pose the question—whose preferences should be reflected?
This fundamental data curation problem results in several challenges for developers to reconcile,
including the frequency at which models should be updated to incorporate new preference data
and how best to filter noisy preferences, either through pre-processing or down-weighting such
samples in alignment algorithms (Liang et al. 2024). For human-elicited data, the source and
granularity of preferences can play a meaningful role. Preferences can be explicitly controlled by
users (e.g. through settings, thumbs up/down feedback, or direct instructions), implicitly inferred by
models from repeated interaction with users (continued engagement, follow-up questions posed by
models (Andukuri et al.,[2024; (Chi et al., |2024; | OpenAll @), or derived from pre-defined personas,
organizational settings / policies (Bai et al., 2022b} |Guan et al., | 2025b), or more. As we envision
multi-layered personalization—global, organizational, user, and task-level-the complexity of managing
and reconciling these (potentially conflicting) preference signals increases.

This is where the perspective of personalization in foundation model deployment as akin to rec-
ommendation systems becomes particularly salient. Just as recommendation systems steer users
to content that is predicted to have high engagement, we postulate that personalized models may
be steered to reflect preferences based on attributes or personas that maximize user satisfaction or
perceived helpfulness. At the same time, a widely accepted definition of steering has yet to be
established. What is the scope of steering—how can models be trained over aggregated preferences,
yet distilled down to the individual level for personalization? To that end, there is a growing interest
in research studying sample-efficient, on-the-fly adaptation to preferences, facilitating cheaper model
updates in the preference regime (Singh et al., 2025} [Li et al., 2025)).

However, if the explicitly or implicit signals used for model steering primarily reward agreement,
affirmation, or mirroring the user’s preferences and biases, the model will undoubtedly learn syco-
phantic behaviors (Perez et al., 2022; Sharma et al.| [2025). The model would not necessarily be
"personalized" and understand the user deeply, but it would instead simply be optimizing its responses
to match engagement (akin to a recommendation system), matching patterns in the preference data
associated with that user or persona. This issue was reported recently regarding conversational
agent benchmarks such as Chatbot Arena, where certain models were purported to have "gamed" the
benchmark (Imarena.ai, 2025). A concerning alignment phenomenon extending sycophancy is to
be misleading, an action which is posited to be potentially deliberate (Greenblatt et al.,|[2024; Wen
et al. 2025); this suggests that rewarding agreement can have a vast range of negative downstream
consequences, which manifest both during RLHF and in deployment. Thus, while we endorse
the study of personalization approaches induced by preference optimization over both human and
synthetic preference data, developers and users alike must be mindful to disentangle the resulting
model’s behavior from reward hacking and sycophancy.

3.2 Uncertainty Calibration

From a reliability standpoint, it is inherently valuable to develop uncertainty estimates alongside
responses. When questions are objective (and as are the resulting answers), this paradigm is clear,
and we already have notions of which data to draw from when generating responses. We can evaluate
calibration using metrics like Expected Calibration Error on predictive probabilities and employ
techniques such as temperature scaling (Guo et al.|[2017)) or leverage more sophisticated methods like
conformal prediction to generate statistically valid prediction intervals (Kumar et al.| [2023] [Kadavath
et al.| 2022; |Cherian et al.,[2024). In verifiable settings, we can use methods such as decision-based
RL, but for subjective queries, does a notion of reliability even exist?

The landscape of uncertainty calibration is considerably more complex when considering subjective
questions. In such scenarios, when questions involve opinions, disputed historical interpretations of
events, or topics wherein science does not yet offer a single definite answer, does a robust notion of
"reliability" or "truth-aligned uncertainty" even exist in the same way? If it does, its definition is
certainly more elusive.

This ambiguity raises a critical question: if we are to calibrate models to reflect subjective content,
whose estimates should models reflect (see Santurkar et al.| (2023b)); [Sorensen et al.| (2024a)) for
relevant work)? When calibrating models, which data should we prioritize? In other words, should
models reflect "societal averages" of uncertainty, or the uncertainty of some selected set of "subject
experts" (who themselves may disagree with one another), or the uncertainty profile of an individual
user? Aggregating these across a diverse user population to form a coherent calibration target is a



non-trivial modeling problem, arguably more complex than aggregating preferences (Bakker et al.|
2022). Risks and intrinsic human uncertainties are extremely heterogeneous; unlike preferences,
which might cluster around identifiable features or demographics, individual comfort levels with
ambiguity or varying interpretations can be deeply personal and context-dependent.

Query Types & Risk Levels

Objective Queries Ambiguous Queries Subjective Queries
Verifiable facts Incomplete information Opinions, ambiguocus topics
Clear ground truth Multiple valid perspectives Nao clear ground truth
Low Sycophancy Risk High Sycophancy Risk

Figure 2: Query taxonomy and associated sycophancy risks in foundation model personalization.
Objective queries present the lowest risk for sycophantic behavior. Ambiguous queries pose moderate
risk, as models may selectively emphasize information. Subjective queries without clear ground truth
present the highest risk, making subtle sycophancy difficult to detect and correct.

Attempting to engineer models to individually calibrate to a user’s uncertainty, while seeming to be a
straightforward path to robust personalization, walks a fine line with inducing confirmation bias and
consequently, the kind of sycophancy we aim to avoid. If a model’s expressed uncertainty is tailored
to align with a user’s pre-existing doubts or certainties, it may inadvertently reinforce those beliefs,
regardless of broader evidence or alternative perspectives. This can readily lead to overfitting to a
specific persona’s perceived uncertainty profile, manifesting as a subtle form of sycophantic behavior:
the model expresses uncertainty not based on the inherent ambiguity of the information, but in a way
that it predicts will align with the user’s expected level of certainty or doubt. This can lead to a model
expressing uncertainty (or confidence) sycophantically, detached from its true epistemic uncertainty
(its own knowledge gaps) about the topic or the high aleatoric uncertainty (inherent ambiguity) of the
query itself (Zhou et al.,|2024). This is particularly concerning when a user might be misinformed or
hold biased views.

A significant concern is that under conditions of uncertainty or lack of explicit specification in a
user’s prompt, the model’s default behavior might lean towards confirmation bias. This can be seen
as a form of reward hacking: the model, unsure of the "correct”" or most helpful nuanced response,
learns that expressing certainty in line with the user’s implied stance, or mirroring a user’s expressed
uncertainty, is more likely to be perceived positively (e.g., receive a "thumbs up" or lead to quicker
task completion), even if it sacrifices a more objective or comprehensive portrayal of the situation
(Skalse et al., 2022;|Gao et al., [2022)). This decouples the model’s verbalized uncertainty from its
internal confidence signals. For instance, a model might internally have high variance in its next-token
predictions (suggesting low confidence) but still output a confident-sounding sycophantic response if
it anticipates user approval.

One open research question is if engineers can utilize the sheer size and scale of models to solve such
problems. Could training on a vast and diverse enough range of "personas" or viewpoints lead to a
more generalized and robust form of uncertainty representation that is less susceptible to individual
sycophancy? Or would this create an average that satisfies no one or worse, masks underlying biases?

It is also important to consider test-time expressions of uncertainty. How a model communicates its
internal level of uncertainty to users at the point of interaction can significantly sway user trust, and
model performance (Zhou et al., 2023, |2024). We argue that overly vague expressions of confidence
might be simply ignored, while seemingly cautious models may render models unhelpful. Developing
methods for models to clearly communicate confidence levels derived from internal signals, such as
token-level probabilities or variance from ensemble methods, rather than purely linguistic cues, will
be crucial. This includes exploring how uncertainty can be dynamically presented and potentially
adjusted by the user, perhaps with explicit controls that make the trade-offs between personalization
and broader perspectives transparent.



4 Proposed Research Directions

Our thesis is that personalization and sycophancy lie on a spectrum, and the field urgently needs
principled tools to explore the optimal trade-off. Below, we outline directions for future work:

Develop Benchmarks for Sycophancy. First, we advocate for the development of explicit syco-
phancy detection benchmarks that can be made available to open-source communities as well as the
introduction of systematic red teaming for sycophancy. Such benchmarks should span a range of
contexts, including factual, ambiguous, and fully subjective queries, and measure not just factual
agreement but nuanced behaviors such as mirroring user sentiment, giving answers with unwarranted
certainty, or selectively omitting alternative viewpoints. Crowdsourcing and adversarial user sim-
ulation could be leveraged to surface subtle forms of sycophancy not readily captured by current
evaluation pipelines. Further, evaluating model responses to different user personas might reveal
epistemic misalignment or relative bias in how an LLM decides to act sycophantically.

Enabling Dynamic, User-Driven Personalization. Second, we call for the exploration of inter-
active, user-configurable personalization controls. Rather than treating personalization as a static,
opaque process, future systems should empower users (and organizations) to dynamically adjust the
degree and nature of personalization. For instance, users could explicitly request higher or lower
levels of alignment, or choose to see contrasting perspectives alongside a personalized response.
Making these trade-offs transparent may also serve as a subtle educational mechanism, helping users
become aware of the risks of over-personalization. In this approach, selecting the correct default level
of personalization is an important alignment decision for providers of LLMs. Controlled behavioral
studies and human evaluation analysis into the impacts of such controls can serve as both an effective
red-teaming avenue as well as to discover the response of human users when given greater agency.

Sycophancy-aware Post-training Approaches Third, we propose reward modeling and RL algo-
rithms that incorporate anti-sycophancy objectives alongside user satisfaction. For example, models
could be penalized for excessive agreement or rewarded for presenting dissent, especially when users’
queries invite nuance or contain potential biases. Dynamic reward shaping could force models to
trade-off user satisfaction with truthfulness, especially when prompts request subjective assessments.

Further, we propose that the community explore meta-learning and continual learning strategies that
enable models to adapt to individual users while maintaining a regularization signal from broader
population norms or expert knowledge. Such techniques could help models recognize when to
prioritize helpfulness and when to preserve epistemic diversity, potentially by dynamically learning
“when not to adapt.” From a technical standpoint, one can use distributional approaches to reflect
calibration over a vast range of subpopulation groups (Santurkar et al., | 2023bj |Durmus et al.| |[2024).
We hypothesize that enforcing properties akin to multicalibration (Hébert-Johnson et al.| 2018) on the
induced distribution over the set of groups can be a strategy towards a regularized pluralistic policy.

Grounded Uncertainty Estimates. Fourth, we call for grounded uncertainty estimates that are
intrinsic to the model’s latent knowledge, rather than the user’s wording. Concretely, we urge the
community to (i.) develop post-hoc uncertainty quantification tools, such as adaptive temperature
scaling for confidence scores (Xie et al., 2024), conformal prediction for API-only models (Su et al.,
2024; Wang et al., [2024b)), and ensemble metrics for long-form text (Zhang et al.,[2024) and (ii.) pair
them with end-to-end training losses that penalize mis-calibration across paraphrased prompts. These
techniques should be benchmarked first on factual QA, where ground truths are available, and then
extended to open-ended generation by treating uncertain user intent as noise that the model must flag.

During alignment, calibration should become part of the reward: answers that sound confident but
fail certainty guarantees are down-weighted, while answers that demonstrate genuine doubt (e.g. a
request for clarification, low calibrated probability) are rewarded, even if that doubt does not align
with the user’s expressed certainty. By anchoring evaluation to model-driven confidence signals
that are robust to prompt re-phrasings, we can discourage sycophancy. At the same time, studying
the dynamics during convergence to minimizing calibration error to these post-hoc estimates which
extract subjectivity from the equation may reveal new insights into the internal mechanisms guiding
intrinsic uncertainty estimation. Such information could yield new approaches which can maximally
exploit the nature of the representation driving linguistic calibration. Such strategies will also aid
in reducing sensitivity to linguistic expressions of confidence in the prompt and anchoring their



estimates to an intrinsically learned policy. The result would be models that can flag and articulate
their own uncertainty, and ask for follow-up clarification when the epistemic gap is too wide.

Personalization and Attribution. Fifth, developing causal and attributional analysis tools to
trace the impact of each personalization technique on model responses could be extremely valuable.
However, we recognize that current interpretability research is not yet able to provide detailed
attributions at the level required. There is a pressing need for post-training interpretability methods
that allow users and researchers to understand whether a particular response or model behavior stems
from genuine user preferences, system biases, or reward-hacking artifacts introduced during RLHF.
Techniques for auditing the influence of RLHF, context window data, and adapter layers on model
outputs could play a critical role in mitigating issues related to sycophancy in the long term.

We suggest longitudinal studies and simulation environments that examine the societal effects of
personalized language models at scale, with a particular focus on the propagation of sycophancy in
feedback loops. This could include simulating networks of users and models to observe emergent echo
chambers, or running real-world A/B tests on different degrees of anti-sycophancy regularization.

Societal Impacts of Foundation Model Deployment. Finally, we note the importance of assessing
the societal and economic impact of personalization at scale. Just as social media content recommen-
dation systems sometimes prioritize engagement over well-being, similar dynamics can emerge with
LLM-driven products. Research should explicitly model and anticipate the long-term effects of strate-
gic deployment of personalized language models on users, organizations, and society—including the
potential for filter bubbles, polarization, or user affective use of models and its impact on emotional
well-being (Phang et al., |2025).

By pursuing these research directions, the community can move toward Al systems that provide
both highly personalized and trustworthy assistance increasing utility and user satisfaction while
proactively minimizing the societal and individual harms associated with unchecked sycophancy.

5 Discussion

Addressing the issues we have discussed thus far necessitates a fundamental shift in how we concep-
tualize and evaluate "good" personalization. The research avenues proposed aim to re-calibrate this
optimization landscape. These are not merely incremental technical fixes but represent a call for a
more principled approach to Al development, one that explicitly values epistemic diversity and model
honesty alongside user satisfaction. The goal is not to curtail the drive for personalization, which
offers undeniable benefits, but to ensure that this drive is tempered with mechanisms that actively
guard against the pitfalls of uncritical alignment.

In addressing this challenge, we must grapple with the view that the harms of sycophancy are
overstated and that market forces and user sophistication will naturally self-correct. In this view,
users will ultimately abandon purely sycophantic systems in favor of those that provide genuine
utility and truthfulness, making explicit intervention an unnecessary brake on innovation. A related
viewpoint prioritizes immediate utility, arguing that the tangible, near-term benefits of a highly
engaging and emotionally validating personalized assistant outweigh the more abstract, long-term
risks of epistemic erosion. While we acknowledge the power of these incentives, we argue this
perspective is dangerously optimistic. The evolution of social media recommendation algorithms
shows how optimizing for engagement can systematically foster echo chambers and polarization
despite user agency. The line between beneficial personalization and the subtle reinforcement of
biases is often too blurry for an individual to detect, risking the accumulation of an "epistemic debt"
that is far harder to remedy than to prevent. Therefore, a proactive, principled approach is not a
hindrance but a prerequisite for building truly robust and lastingly beneficial systems.

Another belief among some practitioners is that end users themselves will naturally detect and avoid
sycophantic behavior. That is, if an LLM consistently echoes a user’s biased viewpoint instead of
challenging it, the user will notice and adjust their prompts, flag this behavior, and/or migrate to
another platform. However, we point out that this stance not only assumes good intent on the part of
the user, but also that users have the ability to switch between models as a mitigation strategy, which
may not always be possible. For example, in some enterprise use cases, one may be limited to using a
particular model. We suggest instead that a priori awareness of the model’s sycophancy behavior



(through benchmarking) and learning safe behavior given biased viewpoints (via sycophancy-aware
post-training strategies) can avoid this scenario altogether.

A practical, market-driven viewpoint suggests that maximizing immediate user engagement — even at
the cost of moderate sycophancy — is a necessary step for the mass societal adoption of LLMs. Propo-
nents of this perspective highlight how social-media platforms deliberately optimize for "likes" or
"thumbs-up" signals; in the process, they rapidly scale user bases while accepting some echo-chamber
effects (Cinell: et al., [2021}; [Lazovich, 2023). From this angle, regulating forms of user-pleasing
responses would be seen as a hindrance to innovation, and we should instead rely on user feedback
loops to gradually correct harmful behaviors. We hold that this belief risks normalizing sycophancy
in mainstream LLM use, making it harder over time to disentangle genuine personalization from
echoing. Moreover, for sensitive domains, even small sycophantic errors can lead to outsized harm,
further suggesting that this "engagement-first" view may be imprudent.

Ultimately, the societal integration of increasingly personalized FMs hinges on our collective ability
to navigate this complex interplay between adaptation and truthfulness. If FMs predominantly learn
to tell users what they want to hear, the long-term consequences for individual learning, societal
polarization, and trust in Al systems could be significant, undermining the very foundation of our
epistemic dependence on these powerful tools. The path forward requires a concerted effort from
researchers, developers, and policymakers to foster an ecosystem where the pursuit of user-centric Al
does not come at the cost of broader epistemic values. By differentiating beneficial personalization
from detrimental sycophancy and actively working to mitigate the latter, we can strive to develop
FMs that are not only more helpful and engaging but also more robust, reliable, and fundamentally
trustworthy partners in our increasingly complex information world. This endeavor is crucial for
ensuring that the profound capabilities of foundation models serve to genuinely augment human
intelligence and contribute positively to societal well-being.
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